بسم الله الرحمن الرحيم
علم الجبر
علم الجبر
علم الجبر :
العرب: لقد اشتغل العرب بالجبر و ألفوا فيه بصورة علمية منظمة ، حتى أن (كاجوري) قال : (( إن العقل ليدهش عندما يرى ما عمله
العرب في الجبر .. )) و من أشهر مؤلفاتهم كتاب ( الجبر و المقابلة ) لمحمد بن موسى الخوارزمي ، و كتاب الخيام في الجبر الذي نشره (ووبك في مارس 1851م) ، قسم العرب المعادلات إلى ستة أقسام و وضعوا حلولا لكل منها ، و استعملوا الرموز في الأعمال
الرياضية و بحثوا في نظرية ذات الحدين ، و أوجدوا قانونا لإيجاد مجموع الأعداد الطبيعية ، و عنوا بالجذور الصماء و مهدوا لإكتشاف اللوغاريتمات .
و في القرن الثالث عشر الميلادي بدأت العلوم الرياضية عند العرب و غيرها تنتقل إلى أوربا عن طريق الأندلس فترجموا مؤلفات العرب في العلوم المختلفة و منها الجبر فقام الرهب جوردانس (حوالي 1220م) باستبدال الكلمات في العبارات الجبرية بالرموز ، و لقد فعل معاصره (فيبوناكي) نفس الشيء فألف كتابا عن الحساب و مبادئ علم الجبر أوضح فيه تأثره بكتابات الخوارزمي و أبي كامل العلمين العربيين .
وفي القرن السادس عشر توصل العلماء إلى حل معادلات الدرجة الثالثة و الرابعة ، و في القرنين السابع عشر و الثامن عشر توصلوا إلى نتائج باهرة في بحوثهم عن متسلسلات القوى و خواصها .
في مصر القديمة:
لقد عرف المصريون القدماء الجبر فاستعملوا معادلات من الدرجة الأولى و حلوها بطرق مختلفة كما عرفوا معادلات من الدرجة الثانية و حلوا مسائل تؤدي إليها ، و أقدم ما نعرف من علم الجبر عند المصريين نجده في بردى الكاتب المصري (أحمس) التي نسخها نحو 1650ق م ، و هو يذكر أنه نقل هذه البردية عن أصل يرجع إلى نحو 1850ق م ، و يبدوا من المعلومات الرياضية الموجودة في هذه
البردية تعود إلى أيام فرعون زوسر أحد ملوك الأسرة الثالثة (نحو 3000ق م ) ، و صاحب هرم سقارة المدرج أقد الأبنية الحجرية في مصر و فيها نجد ما يدل على أن المصريين القدماء قد عرفوا المتواليات العددية و المتواليات الهندسية و قد عرفوا أيضا معادلات من الدرجة الثانية مثل المعادلتين : +ص2=100 ، ص=3/4س ،حيث س=8 ، ص= 6 ، و هذه المعادلة هي الأساس التاريخي
لنظرية فيثاغورس أ2=ب2+ج2 ، و كان المصريون يسمون العدد المجهول (كومة) .
وبابل
و في حوالي 2000 ق م وضع البابليون القدماء جداول للمربعات و المكعبات و حلوا معادلات الدرجة الثانية و الثالثة والاغريق
، كما عرف الإغريق الحل الهندسي لمعادلات الدرجة الثانية في عصر فيثاغورس ، و قد لمس الإسكندريون الحاجة إلى علم الجبر فبحث (ديوفانتس) الذي عاش في الإسكندرية في القرن الثالث الميلادي (250م) في حل معادلات الدرجة الثانية ذات المعاملات الموجبة ،
وحتى الهنود الحمر
كما عرف الهنود علم الجبر فقام (إرمابهاتا) بإيجاد عدد حدود المتوالية الحسابية التي عرف منها الحد الأول و الأساس و جموع الحدود ، و وضه (برهما جوبتا ) في القرن السابع الميلادي قاعدة لحل معامدلات الدرجة الثانيه .والغرب:
و في القرن التاسع عشر بدأ اكتشاف علوم الجبر الأخرى فابتكر (هاملتون 1805-1865)جبر الرباعيات المسمى باسمه ، و نشر العالم الرياضي ( جراسمان 1809-1877) كتابا يحتوي على بعض أنواع الجبر العامة الأخرى ، و ابتكر العالم الإنجليزي (كيلي 1821-1895) جبر المصفوفات
و كانت أبحاث ( بول 1815-1864) قد ظهرت منذ سنة 1854 و من بين هذه الأبحاث الجبر البولي ، كما ظهرت سنة 1881 أشكال فن لتوضيح الجبر البولي ، و اخترع بيرس سنة 1780 جبر التنسيق الخطي ,,,